

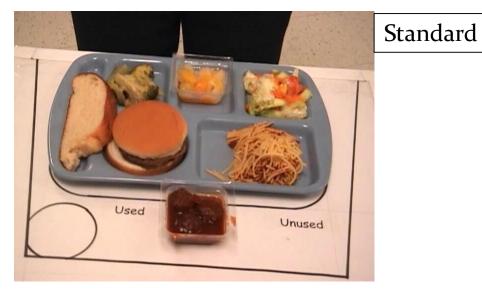
Using the Remote Food Photography Method to Measure Children's Dietary Intake in the Preschool Setting

Today's Presentation

- The Remote Food Photography Method© (RFPM)
 - The RFPM process and the SmartIntake® App
 - Validation studies among children
- Collecting RFPM Data via Video in Head Start
- Results from Mealtime Matters
- Q&A

Food photography: A brief history

- Direct visual estimation of food intake in schools has a long history, dating back to the 1980's (Comstock, EM et al., *JADA*, 1981)
 - Direct visual estimation of food intake has many advantages, and some disadvantages
 - Trained raters must be present in the dining location
 - Throughput is limited and can disrupt the dining environment, particularly in school cafeterias
 - Although some processes are less obtrusive, participants frequently see the human rater evaluating their food selection and plate waste; thus, reactivity can occur


Food photography as an evolution of direct visual estimation

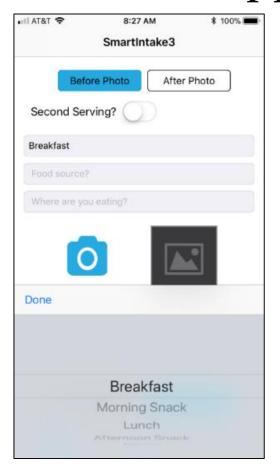
- Don Williamson and team sought to:
 - Quickly and unobtrusively collect video of food selection and plate waste, and rate the images later with visual estimation
 - Increase throughput and not disrupt the dining environment

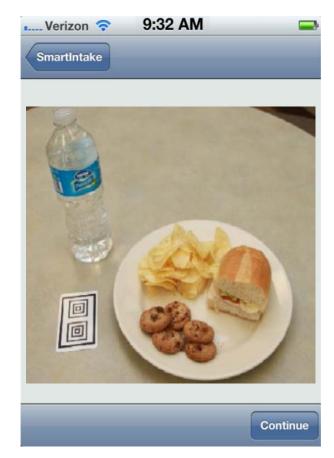
Digital Photography of Foods

- Data are quickly captured via video
- Raters us the Food Photo. App.© to calculate intake based on the USDA database
- Error is +5.2 g vs. weighed intake

Williamson, DA et al., JADA 2003; Eat, & Wt. Disord. 2004

Food Selection


Plate Waste



The Remote Food Photography Method© and SmartIntake® app

Table 2. Descriptive statistics and test of differences between the rater method and the weighed method for food amount and nutrient intake in 54 Hispanic and African-American minority preschool children who participated in a 12-hour observation to validate the intake estimations made using a digital photography method

	Rater Me	thod	Weighed M	ethod	DIF	:	t Test,d		MPE, ^f	AMPE, ^g	
Variable	Mean±SD ^a	CV,b %	Mean±SD	CV, %	Mean±SD	CV, %	P value	95% CL ^e	mean±SD	mean±SD	RMSE ^h
Food amount											
Served, g	1,996±209.5	10.5	1,918±188.3	9.8	77.9±96.5	123.8	< 0.0001	51.6, 1.1	4.1±5.1	5.4±3.8	6.5
Plate waste, g	892.5±33.5	37.4	848.6±330.7	39.0	43.9±61.6	140.2	< 0.0001	27.1, 51.8	6.2±11.4	9.8 ± 8.5	12.9
Intake, g	1,103±322.8	29.3	1,069±296.9	27.8	34.0±71.0	208.7	0.001	14.6, 59.7	$2.9{\pm}6.6$	5.7±4.3	7.1
Nutrient intake											
Energy, kcal	1,102±304	27.6	1,027±279	27.2	75.1±108	135.5	< 0.0001	47.3, 85.5	7.5±10	9.6±8	12.3
Energy density, kcal/g	1.0±0.2	17.5	1.0±0.2	20.8	0.1±0.1	210.4	0.001	0.0, 0.1	6.5±12.1	10.0±9.4	13.7
Protein, g	39.6±14.4	36.4	35.5 ± 12.8	36.2	4.0±4.6	114.0	< 0.0001	2.8, 3.9	11.7±12.1	14.1 ± 10.5	17.5
Carbohydrate, g	169.2±47.2	27.9	161.2±41.9	26.0	8.0±15.4	191.8	0.000	3.8, 12.9	4.6±10.0	8.8 ± 6.6	11.0
Fat, g	30.6±11.7	38.1	28.6±10.6	37.0	2.0±5.2	258	0.006	0.6, 4.4	7.7±18.8	14.8±13.9	20.2

^aSD=standard deviation.

Gram Intake: +2.9 mean % error. Kcal intake: +7.5% (sig. Bland and Altman)

Nicklas et al., *J. Acad Nutr. Diet.*, 2017

bCV=coefficient of variation.

^cDIF=difference between rater and weighed methods.

^dPaired t test.

^eCL=confidence limits (lower CL, upper CL).

fMPE=mean percent error; calculated as [(rater method-weight method) × 100/weighed method].

gAMPE=absolute mean percent error.

hRMSE=root mean square error.

-15.6% (consistent) error

TABLE 2 Mean intake of macronutrients using the RFPM compared to the DLW method

			Lower 95% CL for mean		
	Mean	SD	LCL	UCL	
RFPM					
Protein (g)	46.50	10.11	43.22	49.78	
Carbohydrate (g)	159.29	42.22	145.61	172.98	
Fat (g)	42.40	10.83	38.89	45.91	
% Calories from protein	15.84	2.74	14.95	16.72	
% Calories from carbohydrate	53.75	5.70	51.90	55.60	
% Calories from fat	31.65	4.53	30.18	33.12	
El (kcal/d)	1,190.5	256.1	1,107.5	1,273.6	
Food quotient	0.88	0.02	0.88	0.89	
DLW method					
N _H (kg)	11.03	1.90	10.41	11.64	
N_0 (kg)	10.70	1.84	10.10	11.29	
N _H /N _O	1.03	0.01	1.03	1.03	
$k_H (d^{-1})$	-0.12	0.02	-0.13	-0.11	
$k_0 (d^{-1})$	-0.17	0.02	-0.17	-0.16	
TEE (kcal/d) ^a	1,412.4	220.0	1,341.1	1,483.7	
Lean body mass (kg)	13.8	2.4	13.0	14.5	
Body fat (kg)	5.1	1.9	4.5	5.7	
Body fat (%)	26.6	5.3	24.9	28.3	
Energy difference (RFPM – DLW method) (kcal/d) ^a	-221.9	274.2	-310.7	-133.0	

 k_H , fractional turnover rate of 2H ; k_O , fractional turnover rate of ^{18}O ; LCL, lower confidence limit; N_O , isotope dilution space of ^{18}O ; N_H , isotope dilution space of ^{2}H ; TEE, total energy expenditure; UCL, upper confidence limit; EI, energy intake; MPE, mean percent error. $^{8}P < 0.0001$; MPE = -22.82 ± 29.71 ; root mean square error = 243.68.

Nicklas et al., Obesity, 25; 2017

Collecting RFPM Data via Video in Head Start

Challenges with Food Photography in CACFP Settings

- Family-style dining = lots of servings of food
- RAs concerned they could not capture eating for more than
 2-3 children
- The number of RAs needed becomes unwieldy
 - Disruptive to teachers
 - Disruptive to students, potentially altering eating
 - Difficult to staff, particularly if data collection occurs over a short period and/or at a distant location



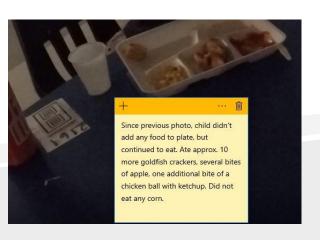
Basics of video recording meals

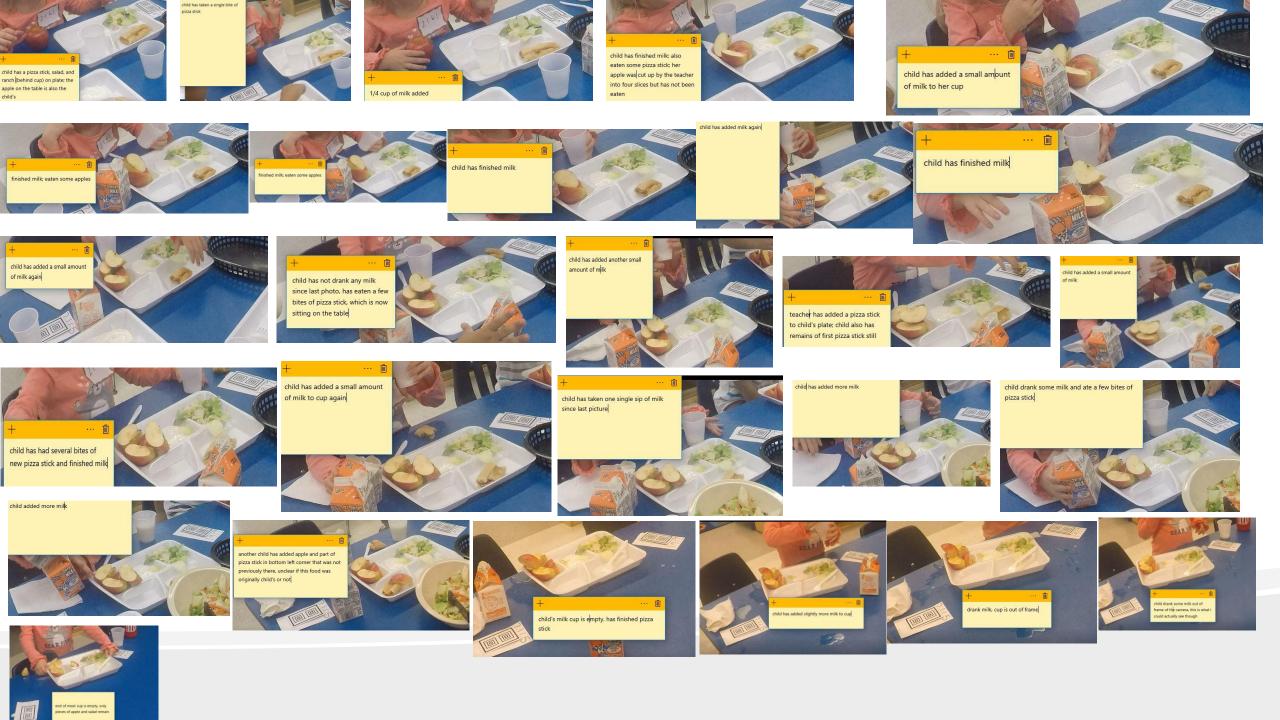
- GoPro cameras with single leg tripod with weighted base
- Cameras need to capture plates at 45 degree angle
- Surround table with cameras so all place settings are captured
- Different room/table layouts require different solutions

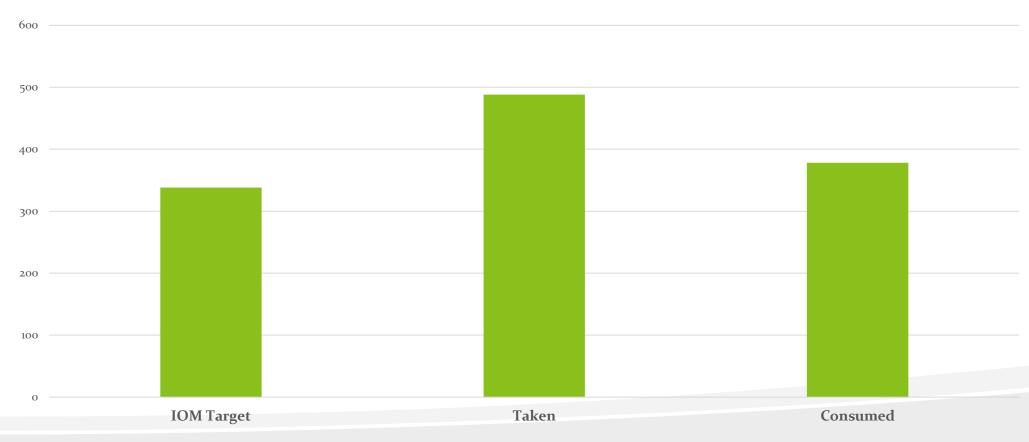
- Set up cameras around empty tables, turn cameras on
- Give children name tag with study ID
- Children sit at table, table is set for meal
- RFPM cards taped to index card with each child ID noted
- RFPM cards placed next to each child's place setting
- RAs monitor if cameras are moved

Post-recording image processing

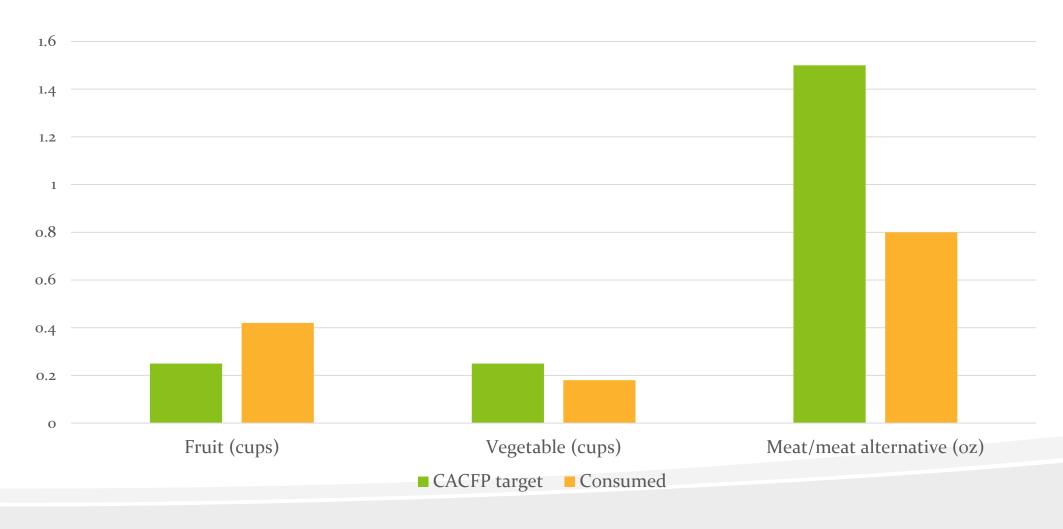
- Goal: From videos, create still images of every pre-eating plate/cup and post-eating plate/cup
- Train RAs to reliability on identifying timing of pre- and posteating
- RAs also annotate every image with what was on the plate and any activity not well-captured in the image
- RAs make at least 2 passes of video, first to identify timing, second to "screen shot" pre- and post-eating and annotate image
- Lead RA reviewed 10% of RAs work to ensure accuracy






Lessons Learned

- Teacher buy-in is critical
- Some food never ends up on the children's plates, careful observation is essential
- Longer videos were more difficult for RAs to keep focused on
- Children with many screenshots were eating/drinking only small amounts of food. High accuracy may not have changed intake measurements very much



Children's Lunch Intake

Kilocalories

Acknowledgements

- Supported by the Michigan Institute for Clinical and Health Research NIH UL1TR002240
- Bauer Research Group Staff
 - Martha Siegmund
 - Lauren Herty
 - Amelia O'Brien-Combs
 - Erin McKenna
 - Casee Wormsbacher
 - Heidi Weeks

- Supported by NIH P30DK072476
- Ingestive Behavior, Weight Management & Health Promotion Laboratory
 - Martin RFPM research team
 - Karissa Neubig
 - Taylor Ayers
 - James Dorling
 - Christoph Hoechsmann
- Clinical Nutrition and Metabolism
 - John W. Apolzan

Disclosures

• Louisiana State University / Pennington Biomedical Research Center have an interest in the intellectual property surrounding the Remote Food Photography Method© (RFPM) and SmartIntake® app and C. Martin (among others) is an inventor of the technology

Questions?

Kate: kwbauer@umich.edu

Corby: Corby.Martin@pbrc.edu